
Parallel, Functional &
Streaming Programming
with Scala

Introduction to
STREAM COMPUTING

Map reduce

Map reduce
Good

● Hadoop distributed file system (HDFS)
● Distributed & massively parallel
● Move the compute to the data
● Accomplish what was impossible before

Not so good

● Finite data set
● Batch process
● Begin to chain jobs together
● Failure?
● Recovery?
● Idempotent?

Workflows
Oozie

Luigi

Azkaban

Airflow

Pinball

Cascading

Taskflow

Streaming frameworks

Streams are all around us
Stock market trading

Social media

Sensors

Weather

Transportation traffic

Video

The opposite of stream is BATCH processing
Has a beginning and an end

The data is time bounded and finite

Example:

● Sales from a single store in a month
● One day trading on a single stock exchange

Stocks are ticking somewhere

The real world never
shuts up, never pauses,
never stops.

So how do we
program it?

SINK

Source, sink, operator

SOURCE

OPERATOR

Directed acyclic graph (DAG)

Source
A

Operator
C

Sink
F

Operator
D

Operator
E

Sink
G

Source
B

Cyclic Bad!

Source
A

Operator
C

Sink
F

Operator
D

Operator
E

Sink
G

Source
B

Streams are different
1. Data is unbounded or infinite
2. Continuous processing
3. There is no now
4. Eventual consistency vs false sense of consistency
5. Closer to reality

#1 Unbounded

#2 Batch vs stream

Credit:
Tyler Akidau.

Calculate closing (end of day) balance
Batch

Start with yesterday’s closing
balance

Add up all the events for the day

Publish a new closing balance

Stream

Recalculate with each new event

Emit new balance with each event

Tag a balance event as closing
balance

#3 Time
Event time:
the time at which events actually occurred

Ingest time:
the time the event is written to the system

Process time:
the time at which events are observed in the system

Time skew

Credit:
Tyler Akidau.

When is now?

3:07:03

3:07:02

3:07:00

3:07:00

3:07:01

3:06:573:07:03

#4 Consistency
Trade data arrives at end of day (EOD)

Processing runs to create EOD status of trades

Corrections exist for previous days

Previous EOD is also changed

Batched processes give us a false sense of consistency

Eventual consistency

Eventual consistency
Applies to organizations too

Eventually all the downstream processes will have consistent values

Batch:
Around 6 pm all the systems have the same value,
but it is probably wrong

Stream:
At 6:00:00.0 pm all systems have a value,
but perhaps not the exact same value

Considerations
1. Message delivery

a. At most once
b. At least once
c. Exactly once

2. Windowing
a. Fixed
b. Sliding
c. Session

3. Joins
a. Inner
b. Left
c. Outer

4. Scaling

At most once delivery
“Best effort” approach

Messages may be lost

At least once delivery
“Guaranteed delivery”

Duplicates will occur

Expensive!

● Distributed snapshot/state checkpointing
● At-least-once event delivery plus message deduplication

Exactly once delivery

Hurst’s Law
Complexity can neither be created nor destroyed;
it can only be displaced.

Pay attention to where it went!

Fixed window
Time is partitioned into same-length, non-overlapping chunks.

Each event belongs to exactly one window

Window by process time

Credit:
Tyler Akidau.

Window by event time

Credit:
Tyler Akidau.

Session window
Sequences of events terminated by a gap of inactivity greater than some
timeout

Window into session by event time

Credit:
Tyler Akidau.

Sliding window
Fixed length and fixed period

Eg, the last 10 seconds reviewed every 2 seconds

03:06

03:07

03:08

03:09

03:10

03:00 03:01 03:02 03:03 03:04 03:05 03:06 03:07 03:08

5 7

3

9

8

4

3

8

1

Process vs event time

03:06

03:07

03:08

03:09

03:10

03:00 03:01 03:02 03:03 03:04 03:05 03:06 03:07 03:08

5 7

3

9

8

4

3

8

1

03:06 process time

5 7 0

03:06

03:07

03:08

03:09

03:10

03:00 03:01 03:02 03:03 03:04 03:05 03:06 03:07 03:08

5 7

3

9

8

4

3

8

1

03:07

5 10 4

03:06

03:07

03:08

03:09

03:10

03:00 03:01 03:02 03:03 03:04 03:05 03:06 03:07 03:08

5 7

3

9

8

4

3

8

1

03:08

5 18 4 3

03:06

03:07

03:08

03:09

03:10

03:00 03:01 03:02 03:03 03:04 03:05 03:06 03:07 03:08

5 7

3

9

8

4

3

8

1

03:09

14 18 4 11

Watermarks
“All input data with event times less than X have been observed”

Heuristic

Best guess, never perfect

Crossing Joining the streams

Joins
Customer data with web traffic data

Securities data with trading data

Weather data with transportation traffic data

Two or more sensors

Join data
● 1000001: 12501 : 45.0
● 1000009: 12508 : 45.1
● 1000012: 12406 : 45.3
● 1000013: 12518 : 45.2
● 1000021: 12508 : 45.4
● 1000007: 12501 : 45.2
● 1000026: 12409 : 45.5
● 1000029: 12402 : 46.0
● 1000035: 12502 : 46.4
● ...

● 1000004: 12501 : S.L.RW
● 1000005: 12502 : ..FW
● 1000005: 12503 : S.L.RW
● 1000018: 12504 : S.L.RW
● 1000021: 12505 : S.L.RW
● 1000021: 12401 : ..FW
● 1000022: 12402 : M..G
● 1000025: 12403 : M..G
● 1000027: 12404 : S.L.G
● ...

Join data
● 1000001: 12501 : 45.0
● 1000009: 12508 : 45.1
● 1000012: 12406 : 45.3
● 1000013: 12518 : 45.2
● 1000021: 12508 : 45.4
● 1000007: 12501 : 45.2
● 1000026: 12409 : 45.5
● 1000029: 12402 : 46.0
● 1000035: 12502 : 46.4
● ...

● 1000004: 12501 : S.L.RW
● 1000005: 12502 : ..FW
● 1000005: 12503 : S.L.RW
● 1000018: 12504 : S.L.RW
● 1000021: 12505 : S.L.RW
● 1000021: 12401 : ..FW
● 1000022: 12402 : M..G
● 1000025: 12403 : M..G
● 1000027: 12404 : S.L.G
● ...

Input stream example

Inner join
Emits an output when both input sources have

records with the same key.

Left join
Emits an output for each record in the left

or primary input source. If the other source

does not have a value for a given key, it is

set to null.

Outer join
Emits an output for each record in either

input source. If only one source contains a

key, the other is null.

Scaling

sink
operator

operator

operator

source

Parallelism

Source
A

Operator
C

Sink
F

Operator
D

Operator
E

Sink
G

Source
B

Fundamental challenge
of parallel processing?

Two approaches to
parallel processing?

Partition by source

Partition round robin

Partition by key

Keys
Types of keys

1. Natural key such as a place name
2. Generated key (aka surrogate key)
3. Composite key

One man’s generated key is another man’s natural key

Never create keys with metadata!

UUID
Universally unique identifier

Sequence identifiers will NOT work in a distributed environment

128-bit

4fedefdb-4c7c-42b5-ae00-b6d286034b2c

Collision: generate 1 billion UUIDs per second for about 85 years

https://www.uuidgenerator.net/

https://www.uuidgenerator.net/

Partition by hash-mod
hash(key) % partitions hash(“Amsterdam”) % 10

8763125 % 10

5

Joins on partitions

P1

P2

P3

Joins on partitions

P1

P2

P3

Will not
work

Joins on partitions

P1

P2

P3

Joins on partitions

P1

P2

P3

Partitions of partitions
Initial

1. 0..9
2. 10..19
3. 20..29
4. 30..39

Expanded

1. 0..6
2. 10..16
3. 20..26
4. 30..36
5. 7..9,17..19
6. 27..29,37..39

Real world example

System example

Sample rates

Legacy processing

Legacy batch processing

Stream processing

Sample rates

Stream processing

G(2789) = G2762 + ((2789-2762)/(2910-2762))G2910

Thank
you!

Calculate the average
● ...
● 100001: 45.0
● 100009: 45.1
● 100012: 45.3
● 100013: 45.2
● 100021: 45.4
● 100007: 45.2
● 100026: 45.5
● 100029: 46.0
● 100035: 46.4
● ...

Process vs event time

03:06

03:07

03:08

03:09

03:10

03:00 03:01 03:02 03:03 03:04 03:05 03:06 03:07 03:08

