
Parallel, Functional &
Streaming Programming
with Scala

Introduction to
PARALLEL COMPUTING

Turing machine

Sequential computing

Parallel programming

Von Neumann architecture

Flynn taxonomy

Flynn taxonomy

Three basic models
1. Shared memory
2. Network
3. Directed acyclic graph (DAG)

Shared memory

Elementals

state process

Distributed memory

Elementals

state process message

Stateless vs stateful
Stateless:

What is the current temperature?

How many shares of IBM did he
sell?

Stateful:

What is the change in temperature
over the past hour?

How many shares of IBM does he
currently own?

Datastore
Does not matter if you are

● In memory
● On disk
● In a database
● Distribute cache
● NOSQL
● On a message bus

store.put(x,y)

val y = store.get(x)

Multiple thread
example class Ticker(id: String) extends Runnable {

 def run: Unit = {
 var x = 0
 val pause = scala.util.Random.nextInt(1000)
 while (true) {
 x = x + 1
 System.out.println(id + ": " + x)
 Thread.sleep(pause)
 }
 }
}

object ParallelOne extends App{
 val names = List("A","B","C","D","E")
 for (name <- names) {
 new Thread(new Ticker(name)).start
 }
}

Sample output
Execution sequence is different
than the coded sequence

Each thread emits events on
different schedules

C: 4
D: 8
A: 14
B: 7
E: 4
A: 15
D: 9
A: 16
B: 8
A: 17
D: 10
C: 5
A: 18
B: 9
D: 11
E: 5

A: 1
D: 1
E: 1
C: 1
B: 1
A: 2
D: 2
A: 3
B: 2
A: 4
D: 3
A: 5
C: 2
B: 3
E: 2
A: 6

D: 4
A: 7
B: 4
A: 8
D: 5
A: 9
C: 3
B: 5
D: 6
E: 3
A: 10
A: 11
D: 7
A: 12
B: 6
A: 13

Fundamental challenge:
do not let different
processes change the
same state at the same
time

ATM example 1

ATM Example 2

Lock (or mutex)

Shared datastore
Process in multiple machines and
let the database handle the data
consistency

shared datastore

processor 1 processor 1 processor 1

ACID
Atomicity
Transactions succeed or fail completely

Consistency
Transactions change from one valid state to another

Isolation
Concurrency control between transactions

Durability
Non-volatile recording

Shared memory

Distributed datastore
The state store is distributed processor 1 processor 1 processor 1

datastore datastore datastore

Distributed memory

Hurst’s Law
Complexity can neither be created nor destroyed;
it can only be displaced.

Pay attention to where it went!

CAP theorem
Consistency**:
Every read receives the most recent write or an error

Availability:
Every request receives a response that is not an error

Partition tolerance:
The system continues to operate despite an arbitrary number of messages
being dropped (or delayed) by the network between nodes

CAP theorem

For stateful parallel processing,
you can either
lock or partition.

And locks are expensive.

Word count problem

deer bear river
car car river
deer car bear

deer bear river

deer car bear

car car river

Lock approach

deer bear river
car car river
deer car bear

deer bear river

deer car bear

car car river

bear +

car +

deer +

river +

Zookeeper
Distributed coordination service for distributed
applications

● Simple
● Fast
● Replicated
● Ordered
● Quorum
● Watches
● High availability

Zookeeper distributed service

Zookeeper hierarchical data structure

create
delete
exists
get data
set data
get children
sync

Sample use cases
Elect a leader

Name service

Load balance the partitions

Share configuration

Mutex

Pub/sub

Actor model
An actor is the primitive unit of computation.

Actors communicate with each other by sending asynchronous messages.

When an actor receives a message, it can do one of these 3 things:

● Create more actors
● Send messages to other actors
● Designate what to do with the next message

Actors have their own internal isolated state

Partitioned
Use a different state store for
each process

processor 1 processor 1 processor 1

datastore datastore datastore

Map

Map reduce

2004 Google MapReduce
Resolved:
1. Parallelization — how to parallelize the computation
2. Distribution — how to distribute the data
3. Fault-tolerance — how to handle component failure

Move the program to the data.

There’s simply too much data to be moved around.

MR example
<symbol>,<date>,<open>,<high>,<low>,<close>,<vol>
AAPL,201010110900,295.01,295.05,294.82,294.82,5235
MSFT,201010110900,67.23,67.70,67.04,67.65,72383
IBM,201010110900,100.20,100.34,100.20,100.31,8921
...
AAPL,201010110905,294.81,294.9,294.8,294.85,7441
...

Ticker data

Every 5 minutes

High, low, volume

Want the daily value
weighted average price
(VWAP)

Volumn weighted average price (VWAP)

case class Tick(symbol:String, date:String, time:String, open:Double, high:Double, low:Double, close:Double, volume:Int)
case class TickDate(date:String, symbol:String)
case class Vwap(price:Double,volume:Int)

class VwapMapper extends Mapper[Object,Text,TickDate,Tick] {
 def map(key:Object, value:Text, context:Context) = {
 val tick = parseTick(value)
 context.write(TickDate(tick.date, tick.symbol), tick)
 }
 def parseTick(value:Text): Tick = {
 Tick("","","",0,0,0,0,0) // TODO
 }
}

class VwapReducer extends Reducer[TickDate,Tick,TickDate,Double] {
 def reduce(key:TickDate, values:Seq[Tick], context:Context) = {
 val vwap = values.foldLeft(Vwap(0,0)) { (z, t) =>
 val price = (t.high + t.low)/2
 val totalVolume = z.volume + t.volume
 new Vwap((z.price * z.volume + price * t.volume)/totalVolume, totalVolume)
 }
 context.write(key,vwap)
 }
}

MR example
Mapper

Input:
<symbol>,<date>,<open>,<high>,<low>,<close>
,<vol>
AAPL,201010110900,295.01,295.05,294.82,294.
82,5235

Output:
<tickdate>,<tick>
20101011,AAPL
AAPL,201010110900,295.01,295.05,294.82,294.
82,5235

Reducer

Input:
<tickdate>,Seq<tick>

Output:
<tickdate>,<vwap>
20101011,AAPL 293.23

Map and reduce in Scala
scala> val a = List(1, 2, 3, 4, 5)

scala> a.map(x => x*2)

res0: List[Int] = List(2, 4, 6, 8, 10)

scala> def f(x:Int)= if (x>2) Some(x) else

None

scala> a.map(x => f(x))

res1: List[Option[Int]] = List(None, None,

Some(3), Some(4), Some(5))

scala> val a = Array(12, 6, 15, 2, 20, 9)

scala> a.reduceLeft(_ + _)

res0: Int = 64

scala> a.reduceLeft(_ * _)

res1: Int = 388800

scala> a.reduceLeft(_ min _)

res2: Int = 2

scala> a.reduceLeft(_ max _)

res3: Int = 20

Reduction

Scan

GPU
Kernel

Grid

Block - shared memory

Thread

GPU

GPU

Limits to parallel processing

RAM vs disk vs network
Accessing the RAM is in the order
of nanoseconds (10e-9 seconds),
while accessing data on the disk
or the network is in the order of
milliseconds (10e-3 seconds).

If reading from RAM took one
minute, then reading from disk or
network would take 60 days.

Covered in next lectures
Directed acyclic graph (DAG)

Actors

Managing distributed state

Thank
you!

CQRS
Command Query Responsibility
Segregation

