
SHORT HISTORY of
BIG DATA & STREAMING
PROGRAMMING TECHNOLOGY

Jeffrey Ricker

● 1991BS Mechanical Engineering (Robotics) Tulane University
● 1996US DOD High Performance Computing Modernization Program
● 1997 DARPA Shaolin Project
● 1998 Founded XMLSolutions Corp
● 2004 Founded Distributed Instruments LLC
● 2013 Amazon Big Data
● 2015 Founded The Ricker Lyman Robotic Company

Objective

Provide historical context of technology evolution leading up to
streaming big data

Agenda

1. High performance computing
2. Open source
3. Hadoop (big data)
4. Functional programming
5. Streaming programming
6. Why history?

High Performance
Computing

Size matters

1946 ENIAC

1964 CDC 6600

1976 Cray 1

1991 CM-5

1994 Beowulf cluster

2018 Summit

Summit has 4,356 nodes, each one
equipped with two 22-core Power9 CPUs,
and six NVIDIA Tesla V100 GPUs. The
nodes are linked together with a Mellanox
dual-rail EDR InfiniBand network.

High Performance Computing

1940–1970: the first supercomputers

1975–1990: the Cray era

1990–2010: the cluster era

2000–2020: the GPU and hybrid era

2020-: ???

GPU evolution

Open Source

A business model of innovation

1790

1984

1991

1993

1999

Key events in open source

1984 Richard Stallman (MIT) starts GNU
project

1989 GPL

1991 Linus Torvalds releases Linux

1993 Mosaic browser
Red Hat founded

1994 Netscape
MySQL launched

1996 Apache launched

1997 Eric Raymond "The Cathedral and the
Bazaar"

1998 Netscape open sources
Mozilla Firefox

1999 Apache Foundation
IBM announces $1 billion investment

in Linux

2006 Hadoop incubator

Hadoop

How distributed computing went mainstream

Original search

Legend of Paal Paysam

1997 Lucene

Doug Cutting builds full text search library

Analyze ordinary text with the purpose of building an index.

Index is a data structure that maps each term to its location in text, so
that when you search for a term, it immediately knows all the places
where that term occurs.

Add Nutch: a web crawler

2003 Google File System

● schemaless with no predefined structure, i.e. no rigid schema with
tables and columns (and column types and sizes)

● durable once data is written it should never be lost
● capable of handling component failure without human intervention

(e.g. CPU, disk, memory, network, power supply, MB)
● automatically rebalanced to even out disk space consumption

throughout cluster

Google file system

2004 Google MapReduce

The three main problems that the MapReduce paper solved are:

1. Parallelization — how to parallelize the computation
2. Distribution — how to distribute the data
3. Fault-tolerance — how to handle component failure

A program is sent to where the data resides.

There’s simply too much data to be moved around.

MapReduce

Pre Hadoop

1997 Lucene started by Doug Cutting
2000 Lucene released to Source Forge
2001 Lucene becomes Apache project http://lucene.apache.org/
2001 Cutting and Mike Cafarella start Apache Nutch
2003.10 Google File System published
2004 Nutch Distributed File System
2004.01 Scala released
2004.12 Map Reduce published https://ai.google/research/pubs/pub62
2005.06 MapReduce integrated into Nutch

Post Hadoop

2006.02 Hadoop incubator released
2006 Bigtable published https://ai.google/research/pubs/pub27898
2007.02 Yahoo reports 1000 node Hadoop cluster
2008.01 Hadoop becomes a top level Apache project
2008 HBase joins Hadoop
2008.05 ZooKeeper
2008.10 Pig (from Yahoo) and Hive (from Facebook)
2008 Cloudera founded
2012 Yahoo Hadoop cluster reaches 42,000 nodes
2012.08 YARN becomes subproject

2012 YARN

Functional programming

What is old is new again

Programming paradigms

● Imperative
● Structured
● Procedural
● Object-oriented
● Event-driven
● Declarative
● Functional
● Reactive

Gottfried von Leibniz
(1) Create a ‘universal
language’ in which all
possible problems can be
stated.

(2) Find a decision method to
solve all the problems stated
in the universal language.

Entscheidungsproblem

1936 Church & Turing

Turning machine

Algorithms

Lambda calculus

● A formal system in mathematical logic for expressing computation
based on function abstraction and application using variable binding
and substitution.

● The smallest universal programming language of the world. The λ
calculus consists of a single transformation rule (variable
substitution) and a single function definition scheme.

Lambda examples

first of (sort (append (‘dog’, ‘rabbit’) (sort ((‘mouse’, ‘cat’)))))
→ first of (sort (append (‘dog’, ‘rabbit’) (‘cat’, ‘mouse’)))
→ first of (sort (‘dog’, ‘rabbit’, ‘cat’, ‘mouse’))
→ first of (‘cat’, ‘dog’, ‘mouse’, ‘rabbit’)
→ ‘cat’.

(7 + 4) ∗ (8 + 5 ∗ 3)
→ 11 ∗ (8 + 5 ∗ 3)
→ 11 ∗ (8 + 15)
→ 11 ∗ 23
→ 253.

Lisp

(defun factorial (n)
 (if (= n 0) 1
 (* n (factorial (- n 1)))))

Functional programming languages

1932 Lambda calculus -- Alonzo Church
1958 LISP -- John McCarthy
1970 Scheme
1986 Erlang
1990 Haskell
1995 JavaScript
2004 Scala
2005 F#
2007 Clojure

Stream Programming

What, when, why, how?

A rose by any other name...

● Stream programming
● Stream processing
● Real-time analytics
● Streaming analytics
● Complex event processing (CEP)
● Real-time streaming analytics
● Event processing

Earlier CEP frameworks

● 2002Aurora
● 2005Borealis
● 2005 Apama
● 2007 Cayuga
● 2008 Esper
● 2011 Apache S4 (Yahoo)

What is CEP?

Trivial

React to a button pushed

Complex

React to a button pushed 3 times in 10
seconds

0001 Push

0005 Push

0012 Push

0014 Push ALERT

0021 Push alert again?

0033 Push

MapReduce

Workflows

Oozie
Luigi
Azkaban
Airflow
Pinball
Cascading
Taskflow

2011 Apache Storm

Streaming frameworks

2011Apache Storm

2014Apache Spark
Apache Samza

2015Apache Flink
Apache Nifi

2016Apache Gearpump
Apache Apex
Kafka Streams
Akka Streams

2013 Lambda Architecture

2015 Kappa architecture

Why history?

The only constant is change

Pie metaphor
● Different technologies fill

different roles, like slices of a
pie

● Where slices meet neither
solution is a perfect match

● The pie is always expanding
● The boundary between slices

become large gaps
● New technologies arise to fill

the gaps

Tree metaphor
● There are many, many

instances of the same
thing

● Focus on root or branch
technology before dealing
with leaves

● What is old is new again

Pendulum metaphor
● Markets oscillate
● Centralized to decentralized
● Structured to unstructured
● Consolidated to fractured

The hype cycle

Build wagons, not cabins

Thank
you!

